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Abstract: Generally, when we discuss operations on matrices, we introduce addition, subtraction, scalar 

multiplication and even multiplication. We never discuss the concept of division of two square matrices. 

In this paper, I have introduced the concept of division of two square matrices under certain 

conditions. In fact, we have introduced the term ‘Quotient Matrix’  for two square matrices A and B of the 

same order provided AB = BA and B is a non-singular matrix. We have also established all the parallel results 

for ‘Quotient Matrix’ related to algebra of Quotient Matrices, adjoint of a Quotient matrix, inverse of a 

Quotient matrix and determinant of a quotient matrix.  

Keywords: Quotient Matrix  

 

INTRODUCTION 

 Why do we stop at matrix multiplication while doing algebra of matrices? 

 Why did we not talk about matrix division? 

NOTE: Let us go to real number system where we learnt division. If a and b are two real numbers, b  

0 then  is defined as solution of the equations bx = a and xb = a.  We know that bx = xb (by 

commutativity in real numbers), therefore uniqueness of a is preserved so the quotient  is 

meaningful. 

Now, if we consider A and B as two square matrices (of same order), B  0 and suppose  (where C is 

a square matrix of same order as of A and B) then A = BC or A = CB are the consequent matrix equation BC 

 CB (in general), therefore uniqueness of A gets violated.  Hence  does not make sense in case of matrices. 
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MATERIAL AND METHODS  

Let A and B are two square matrices of order n n such that: 

(i)   AB = BA   (ii)  | B |  0 

Then we define quotient matrix  as a matrix C of order n n such that C = AB-1 

NOTE: If A and B are commuting matrices (of same order) then AB-1 = B-1A.   

   C is uniquely determined. 

Example 1:  

   Then AB = BA and |B| = 1 ( 0) 

    where C = AB-1 

   

    

Example 2:  

   Then AB = BA and |B| = 2 ( 0) 

    where C = AB-1 
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Algebra of Quotient Matrices 

Let   and  are two quotient matrices (where A, B, C and D are square matrices of order n), then we can 

define. 

 (for to be a scalar) and  in usual manner in which we have defined X + Y, X – 

Y, X and XY. (for two suitable matrices x and y)  

Some more properties which one can easily verify are:  

(1) , where  is a scalar and nis the order of the square matrices A and 

B. 

(2) For 𝑛 ∈ ℤ+,  

(3)  

(whereadj denotes adjoint) 

 

RESULTS AND DISCUSSION  

Result 1: .  (where |A| = determinant of matrix A) 

Proof:  Consider,  . 

 

 

Result2: For 𝑛 ∈ ℤ+, we have . 

Proof:  Consider,   

     

    (By Prop.1) 
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Result3: . 

Proof:  Consider,   

    

     

     

       (NOTE: | B |  0 ⇒  |adj B |  0) 

Result4: For two quotient matrix  and , we have  

  . 

Proof:  Consider,   

    

     

       …..(1) 

     

     By (1) 

 

 

Inverse of quotient matrix: 

 Let  be any quotient matrix with |A| ≠ 0, then we say is invertible if  a quotient matrix  

such that . 
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 In this case, 
𝐶

𝐷
= (

𝐴

𝐵
)

−1

 

 Now, (
𝐴

𝐵
)

−1

= (𝐴𝐵−1)−1 = 𝐵𝐴−1 

 Prop.1   

 Proof: LHS =   

 Prop.2   

 Proof: Consider, 

    

      

      

 Similarly,   

      

 

Result5: In addition, if A is non-singular then . 

Proof:  Consider,   

   

 

Result6: Further, if |C| ≠ 0, we can see |
(

𝐴

𝐵
)

(
𝐶

𝐷
)
| = 

|𝐴𝐷|

|𝐵𝐶|
 = 

|𝐷𝐴|
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Assumptions: 

(i) | C | 0  ⇒   as   

(ii)  

 

Prob.1: If (
𝐴

𝐵
)

𝑛

= 𝐼 for some positive integer n, then show that  exists.  

Sol. Given: (
𝐴

𝐵
)
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 ⇒  |(
𝐴

𝐵
)

𝑛
| = |𝐼|   

 ⇒  |
𝐴

𝐵
|

𝑛

= 1   

 ⇒     

 ⇒   

  exists. 

Prob.2: If is a 33 quotient matrix, suchthat .  Find .  

Sol. Consider, 

  |2𝑎𝑑𝑗
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Sol. Consider, 

   

   

   

   

  (⸪ A∙ adj A = |A|I) 

   

   

Similarly,   

Prob.4: If  is a 33 matrix satisfying and .  Prove that .  

Sol. Consider, 

   

   

   

   

  (⸪ |A| = |𝐴𝑇|) 

  = (−1)3 |
𝐴

𝐵
− 𝐼| 
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Prob.5: If  is a matrix order 2, such that and .  Find | A |. 

Sol. Given, 

   

  ⇒  

  ⇒  

  ⇒  

  ⇒  

  ⇒  

Prob.6: If  is a 22non-singular matrix, show that .  Find . 

Sol. Given, 

    

 ⇒  |𝑎𝑑𝑗 (
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𝐵
)| = |(𝑎𝑑𝑗 (
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) 

 ⇒   

Prob.7: Let  and  are two non-singular matrixof order 22, such that 

and .  Find | A | and | C |. 

Sol. Given, 
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 ⇒   

 ⇒   

 Also,  

 ⇒   

 ⇒   

 ⇒   

    

 Also,  

 ⇒   

 Similarly,  

 

 

Prob.8: . 

Sol. Consider, 
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Prob.9: For any quotient matrix  (with |A|  0) and a non-zero scalar , we have: 

 . (Verify yourself) 

 

Prob.10: For two quotient matrix and  (with |A|  0, |C|  0) (for which  is defined), we have: 

 . (Verify yourself) 

 

 

CONCLUSION 

The concept of division of two square matrices can be defined under certain assumed conditions. In fact, we 

can talk about the quotient matrix ‘ ’ and verify that all the parallel results related to algebra of matrices, 

adjoint of a matrix, inverse of a matrix and determinant of a matrix hold true in case of quotient matrix.  
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