ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

THEORY OF QUOTIENT MATRIX

Lalit Sharma

Faculty Department of Mathematics, Modern School, Barakhamba Road, New Delhi

Abstract: Generally, when we discuss operations on matrices, we introduce addition, subtraction, scalar multiplication and even multiplication. We never discuss the concept of division of two square matrices. In this paper, I have introduced the concept of division of two square matrices under certain

conditions. In fact, we have introduced the term 'Quotient Matrix' $\frac{A}{B}$ for two square matrices A and B of the

same order provided AB = BA and B is a non-singular matrix. We have also established all the parallel results for 'Quotient Matrix' related to algebra of Quotient Matrices, adjoint of a Quotient matrix, inverse of a Quotient matrix and determinant of a quotient matrix.

Keywords: Quotient Matrix

INTRODUCTION

- Why do we stop at matrix multiplication while doing algebra of matrices?
- Why did we not talk about matrix division?

<u>NOTE</u>: Let us go to real number system where we learnt division. If *a* and b are two real numbers, $b \neq a$

0 then $\frac{a}{b}$ is defined as solution of the equations bx = a and xb = a. We know that bx = xb (by

commutativity in real numbers), therefore uniqueness of *a* is preserved so the quotient $\frac{a}{b}$ is meaningful.

Now, if we consider A and B as two square matrices (of same order), $B \neq 0$ and suppose $\frac{A}{B} = C$ (where C is a square matrix of same order as of A and B) then A = BC or A = CB are the consequent matrix equation BC \neq CB (in general), therefore uniqueness of A gets violated. Hence $\frac{A}{B}$ does not make sense in case of matrices.

MATERIAL AND METHODS

Let A and B are two square matrices of order $n \times n$ such that:

(i)
$$AB = BA$$
 (ii) $|B| \neq 0$

Then we define quotient matrix $\frac{A}{B}$ as a matrix C of order n ×n such that C = AB⁻¹

NOTE: If A and B are commuting matrices (of same order) then $AB^{-1} = B^{-1}A$.

 \therefore C is uniquely determined.

Example 1:
$$A = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$$
, $B = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$
Then AB = BA and |B| = 1 ($\neq 0$)
 $\therefore \frac{A}{B} = C$ where C = AB⁻¹
 $C = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$
 $= \begin{bmatrix} \cos 2\alpha & \sin 2\alpha \\ -\sin 2\alpha & \cos 2\alpha \end{bmatrix}$
Example 2: $A = \begin{bmatrix} 6 & 0 \\ 0 & 7 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$
Then AB = BA and |B| = 2 ($\neq 0$)
 $\therefore \frac{A}{B} = C$ where C = AB⁻¹
 $C = \begin{bmatrix} 6 & 0 \\ 0 & 7 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{bmatrix}$
 $= \begin{bmatrix} 6 & 0 \\ 0 & \frac{7}{2} \end{bmatrix}$

JCRT

Algebra of Quotient Matrices

Let $\frac{A}{B}$ and $\frac{C}{D}$ are two quotient matrices (where A, B, C and D are square matrices of order *n*), then we can define.

 $\frac{A}{B} + \frac{C}{D}$, $\frac{A}{B} - \frac{C}{D}$, $\alpha \frac{A}{B}$ (for α to be a scalar) and $\frac{A}{B} \cdot \frac{C}{D}$ in usual manner in which we have defined X + Y, X – Y, α X and XY. (for two suitable matrices x and y)

Some more properties which one can easily verify are:

(1) $adj \alpha \left(\frac{A}{B}\right) = \alpha^{n-1} adj \cdot \left(\frac{A}{B}\right)$, where α is a scalar and *n* is the order of the square matrices A and B.

(2) For
$$n \in \mathbb{Z}^+$$
, $adj\left(\frac{A}{B}\right)^n = \left(adj\left(\frac{A}{B}\right)\right)^n$

(3)
$$adj\left(\frac{A}{B},\frac{C}{D}\right) = adj\frac{C}{D} \cdot adj\frac{A}{B}$$

(where *adj* denotes adjoint)

RESULTS AND DISCUSSION

Result 1: $\left|\frac{A}{B}\right| = \frac{|A|}{|B|}$. (where |A| = determinant of matrix A)

Proof: Consider, $\left| \frac{A}{B} \right| = |AB^{-1}| = |A| |B^{-1}| = \frac{|A|}{|B|}$.

Result2: For
$$n \in \mathbb{Z}^+$$
, we have $\left| \left(\frac{A}{B} \right)^n \right| = \left| \frac{A}{B} \right|^n$.

Proof: Consider,

$$\left| \left(\frac{A}{B} \right)^{n} \right| = |(AB^{-1})^{n}| = |A^{n}(B^{-1})^{n}| \qquad (\because AB^{-1} = B^{-1}A)^{n} = |A^{n}| |(B^{-1})^{n}| = \frac{|A|^{n}}{|B|^{n}} = \left| \frac{A}{B} \right|^{n}$$
(By Prop.1)

Result3:
$$\left| adj \left(\frac{A}{B} \right) \right| = \frac{\left| adj A \right|}{\left| adj B \right|}.$$

Proof:

$$\begin{vmatrix} adj\left(\frac{A}{B}\right) \end{vmatrix} = \begin{vmatrix} adj AB^{-1} \end{vmatrix} = \begin{vmatrix} adj (B^{-1}) . adj A \end{vmatrix}$$
$$= \begin{vmatrix} adj (B^{-1}) \end{vmatrix} \begin{vmatrix} adj A \end{vmatrix}$$
$$= \begin{vmatrix} adj B \end{vmatrix}^{-1} \begin{vmatrix} adj A \end{vmatrix}$$
$$= \frac{\begin{vmatrix} adj A \end{vmatrix}$$
$$= \frac{\begin{vmatrix} adj A \end{vmatrix}}{\begin{vmatrix} adj B \end{vmatrix}$$
(NOTE: $|B| \neq 0 \Rightarrow |adj B| \neq 0$)

Result4: For two quotient matrix
$$\frac{A}{B}$$
 and $\frac{C}{D}$, we have
 $\left| adj \left(\frac{A}{B}, \frac{C}{D} \right) \right| = \left| \frac{adj(CA)}{adj(DB)} \right| = \left| \frac{adj(AC)}{adj(BD)} \right|$.
Proof: Consider,
 $\left| adj \left(\frac{A}{B}, \frac{C}{D} \right) \right| = \left| adj \frac{C}{D} . adj \frac{A}{B} \right|$
 $= \left| adj \frac{C}{D} \right| \left| adj \frac{A}{B} \right|$
 $= \left| adj \frac{C}{D} \right| \left| adj \frac{A}{B} \right|$
 $= \left| \frac{adj C}{|adj D|} \right| \left| \frac{adj A}{|adj B|} \right|$ (1)
 $= \left| \frac{adj (C. adj A)}{|adj (BD)|} \right|$
 $= \left| \frac{adj (AC)}{|adj (BD)|} \right| = \left| \frac{adj (CA)}{adj (DB)} \right|$ By (1)

Inverse of quotient matrix:

Let
$$\frac{A}{B}$$
 be any quotient matrix with $|A| \neq 0$, then we say $\frac{A}{B}$ is invertible if \exists a quotient matrix $\frac{C}{D}$
such that $\frac{A}{B} \cdot \frac{C}{D} = I = \frac{C}{D} \cdot \frac{A}{B}$.

In this case,
$$\frac{c}{D} = \left(\frac{A}{B}\right)^{-1}$$
Now,
$$\left[\left(\frac{A}{B}\right)^{-1} = (AB^{-1})^{-1} = BA^{-1}\right]$$
Prop.1
$$\left(\left(\frac{A}{B}\right)^{-1}\right)^{-1} = \frac{A}{B}$$
Proof: LHS = $\left(\left(\frac{A}{B}\right)^{-1}\right)^{-1} = \left((AB^{-1})^{-1}\right)^{-1} = (BA^{-1})^{-1} = AB^{-1} = \frac{A}{B}$
Prop.2 $\left(\frac{A}{B}\right)\left(\frac{A}{B}\right)^{-1} = I = \left(\frac{A}{B}\right)^{-1}\left(\frac{A}{B}\right)$
Proof: Consider,
$$\left(\frac{A}{B}\right)\left(\frac{A}{B}\right)^{-1} = (AB^{-1})(AB^{-1})^{-1}$$

$$= (AB^{-1})(BA^{-1})$$

$$= A(B^{-1}B)A^{-1} = AA^{-1} = I$$
Similarly, $\left(\frac{A}{B}\right)^{-1}\left(\frac{A}{B}\right) = \left((AB^{-1})^{-1}\right)(AB^{-1})$

$$= B(A^{-1}A)B^{-1} = I$$
Result5: In addition, if A is non-singular then $\left|\left(\frac{A}{B}\right)^{-1}\right| = \frac{|B|}{|A|}$.

Proof: Consider,

$$\left| \left(\frac{A}{B} \right)^{-1} \right| = \left| \left(AB^{-1} \right)^{-1} \right| = \left| \left(B^{-1} \right)^{-1} A^{-1} \right| = \left| B \right| \left| A^{-1} \right| = \frac{|B|}{|A|}$$

Result6: Further, if
$$|C| \neq 0$$
, we can see $\left|\frac{\left(\frac{A}{B}\right)}{\left(\frac{C}{D}\right)}\right| = \frac{|AD|}{|BC|} = \frac{|DA|}{|CB|}$
Proof: $\left|\frac{\left(\frac{A}{B}\right)}{\left(\frac{C}{D}\right)}\right| = \left|\left(\frac{A}{B}\right)\left(\frac{C}{D}\right)^{-1}\right| = \left|(AB^{-1})(CD^{-1})^{-1}\right|$
 $= \left|AB^{-1}\right|\left|DC^{-1}\right|$

$$= |A| |B^{-1}| |D| |C^{-1}|$$
$$= \frac{|A|}{|B|} \frac{|D|}{|C|}$$
$$= \frac{|AD|}{|BC|} = \frac{|DA|}{|CB|}$$

Assumptions:

(i)
$$|C| \neq 0 \Rightarrow \frac{|C|}{|D|} \neq 0 \text{ as } = \left|\frac{C}{D}\right| = \frac{|C|}{|D|} \neq 0$$

(ii) $\frac{A}{B} \cdot \frac{C}{D} = \frac{C}{D} \cdot \frac{A}{B}$

If $\left(\frac{A}{B}\right)^n = I$ for some positive integer n, then show that $\left(\frac{A}{B}\right)^{-1}$ exists. Prob.1: $\left(\frac{A}{B}\right)^n = I$ Given: Sol. $\left|\left(\frac{A}{B}\right)^n\right| = |I|$ ⇒ $\left|\frac{A}{B}\right|^n = 1$ ⇒ JCRT $\left|\frac{A}{B}\right| = \pm 1$ ⇒ $|A| \neq 0 \quad \left(\because |B| \neq 0 \right)$ \Rightarrow $\left(\frac{A}{B}\right)^{-1}$ exists. ÷ If $\left(\frac{A}{B}\right)$ is a 3×3 quotient matrix, such that $\left|\frac{A}{B}\right| = 4$. Find $\left|2 adj \frac{A}{B}\right|$. Prob.2: Sol. Consider, $\left|2adj\frac{A}{B}\right| = 8\left|adj\frac{A}{B}\right| = 8\left(\left|\frac{A}{B}\right|\right)^{3-1}$

$$= 8 \times \left(\left| \frac{A}{B} \right| \right)^{2}$$
$$= 8 \times 16$$
$$= 128$$
Prob.3:
$$\frac{A}{B} adj \left(\frac{A}{B} \right) = \left| \frac{A}{B} \right| I = adj \left(\frac{A}{B} \right) \frac{A}{B}$$

Sol. Consider, $\frac{A}{B} adj \left(\frac{A}{B}\right)$ $= (AB^{-1}) adj (AB^{-1})$ $= (AB^{-1}) adj (B^{-1}) adj A$ $= A \left(B^{-1} a d j \left(B^{-1} \right) \right) a d j A$ $= A |B^{-1}| I adj A (\because A \cdot adj A = |A|I)$ $= \left| B^{-1} \right| (A adj A)$ $=\frac{|A|}{|B|}I$ $adj\left(\frac{A}{B}\right)$. $\frac{A}{B} = \frac{|A|}{|B|}I$ Similarly, If $\frac{A}{B}$ is a 3×3 matrix satisfying $\left|\frac{A}{B}\right| = 1$ and $\left(\frac{A}{B}\right) \left(\frac{A}{B}\right)^T = I$. Prove that $\left|\frac{A}{B} - I\right| = 0$. Prob.4: Consider, Sol. $\left|\frac{A}{B} - I\right| = \left|\frac{A}{B} - \left(\frac{A}{B}\right)\left(\frac{A}{B}\right)^{T}\right|$ JCRT $=\left|\frac{A}{B}\left(I-\left(\frac{A}{B}\right)^{T}\right)\right|$ $= \left|\frac{A}{B}\right| \left| I^{T} - \left(\frac{A}{B}\right)^{T} \right|$ $=\left|\left(I-\left(\frac{A}{B}\right)\right)^{T}\right|$ $= \left| I - \frac{A}{B} \right| (\because |\mathbf{A}| = |A^T|)$ $= (-1)^3 \left| \frac{A}{P} - I \right|$ $2\left|\frac{A}{R}-I\right|=0$ \Rightarrow $\left|\frac{A}{B}-I\right|=0$ \Rightarrow

Prob.5: If
$$\frac{A}{B}$$
 is a matrix order 2, such that $\left| 2\left(\frac{A}{B}\right)\left(\frac{A}{B}\right)^T \right| = 16$ and $|B| = 1$. Find $|A|$.

$$\begin{vmatrix} 2\left(\frac{A}{B}\right)\left(\frac{A}{B}\right)^T \end{vmatrix} = 16$$

$$\Rightarrow \quad 4\left|\frac{A}{B}\right| \left|\left(\frac{A}{B}\right)^T\right| = 16$$

$$\Rightarrow \quad \left|\frac{A}{B}\right|^2 = 4 \quad \left(\because \left|\frac{A}{B}\right| = \left|\left(\frac{A}{B}\right)^T\right|\right)$$

$$\Rightarrow \quad \left|\frac{A}{B}\right| = \pm 2$$

$$\Rightarrow \quad \frac{|A|}{|B|} = \pm 2$$

$$\Rightarrow \quad |A| = \pm 2$$

P

rob.6: If
$$\frac{A}{B}$$
 is a 2×2non-singular matrix, show that $adj\left(\frac{A}{B}\right) = adj\left(\frac{A}{B}\right)^{-1}$. Find $\left|\frac{A}{B}\right|$.

Given,

$$\begin{vmatrix} adj \left(\frac{A}{B}\right) \end{vmatrix} = \begin{vmatrix} adj \left(\frac{A}{B}\right)^{-1} \end{vmatrix}$$

$$\Rightarrow \begin{vmatrix} adj \left(\frac{A}{B}\right) \end{vmatrix} = \begin{vmatrix} \left(adj \left(\frac{A}{B}\right)\right) \end{vmatrix}^{-1} = \frac{1}{\left|adj \left(\frac{A}{B}\right)\right|}$$

$$\Rightarrow \begin{vmatrix} adj \left(\frac{A}{B}\right) \end{vmatrix}^{2} = 1$$

$$\Rightarrow \begin{vmatrix} adj \left(\frac{A}{B}\right) \end{vmatrix} = \pm 1$$

$$\Rightarrow \begin{vmatrix} Adj \left(\frac{A}{B}\right) \end{vmatrix} = \pm 1$$

$$\Rightarrow \begin{vmatrix} \frac{A}{B} \end{vmatrix} = \pm 1 \left(\because \left|adj \frac{A}{B}\right| = \left|\frac{A}{B}\right|^{n-1}\right)$$

$$\Rightarrow \begin{vmatrix} \frac{A}{B} \end{vmatrix} = \pm 1$$

Let $\frac{A}{B}$ and $\frac{C}{D}$ are two non-singular matrix of order 2×2, such that $|B| = 2 = |D|, \left(\frac{A}{B}\right)^2 = \frac{A}{B} \cdot \frac{C}{D}$ Prob.7: and $\left(\frac{C}{D}\right)^2 = \left(\frac{A}{B} \cdot \frac{C}{D}\right)^{-1}$. Find | A | and | C |.

$$\left(\frac{A}{B}\right)^{2} = \frac{A}{B} \cdot \frac{C}{D}$$

$$\Rightarrow \qquad \left|\frac{A}{B}\right|^{2} = \left|\frac{A}{B}\right| \left|\frac{C}{D}\right|$$

$$\Rightarrow \qquad \left|\frac{A}{B}\right| = \left|\frac{C}{D}\right|$$
Also,
$$\left|\left(\frac{C}{D}\right)\right|^{2} = \left|\frac{A}{B} \cdot \frac{C}{D}\right|^{-1}$$

$$\Rightarrow \qquad \left|\frac{C}{D}\right|^{2} = \frac{1}{\left|\frac{A}{B}\right| \left|\frac{C}{D}\right|}$$

$$\Rightarrow \qquad \left|\frac{C}{D}\right|^{2} = \frac{1}{\left|\frac{A}{B}\right| \left|\frac{C}{D}\right|}$$

$$\Rightarrow \qquad \left|\frac{C}{D}\right|^{2} = \pm 1$$

$$\therefore \qquad \left|\frac{A}{B}\right| = \left|\frac{C}{D}\right| = \pm 1$$
Also,
$$\left|\frac{A}{B}\right| = \pm 1 \Rightarrow \left|\frac{A}{|B|} = \pm 1$$

$$\Rightarrow \qquad |A| = \pm |B| \quad \therefore |A| = \pm 2$$
Similarly,
$$|C| = \pm 2$$

Prob.8:

 $: \qquad \left(\left(\frac{A}{B}\right)^{T}\right)^{-1} = \left(\left(\frac{A}{B}\right)^{-1}\right)^{T}.$

Sol.

Consider,

$$\left(\left(\frac{A}{B}\right)^{-1}\right)^{T} = \left(\left(AB^{-1}\right)^{-1}\right)^{T}$$
$$= \left(\left(AB^{-1}\right)^{T}\right)^{-1}$$
$$= \left(\left(\frac{A}{B}\right)^{T}\right)^{-1}$$

For any quotient matrix $\frac{A}{B}$ (with $|A| \neq 0$) and a non-zero scalar α , we have: Prob.9:

$$\left(\alpha \frac{A}{B}\right)^{-1} = \frac{1}{\alpha} \left(\frac{A}{B}\right)^{-1}$$
. (Verify yourself)

Prob.10: For two quotient matrix
$$\frac{A}{B}$$
 and $\frac{C}{D}$ (with $|A| \neq 0$, $|C| \neq 0$) (for which $\frac{A}{B} \cdot \frac{C}{D}$ is defined), we have:

$$\left(\frac{A}{B} \cdot \frac{C}{D}\right)^{-1} = \left(\frac{C}{D}\right)^{-1} \left(\frac{A}{B}\right)^{-1}$$
. (Verify yourself)

CONCLUSION

The concept of division of two square matrices can be defined under certain assumed conditions. In fact, we can talk about the quotient matrix $\frac{A}{B}$ and verify that all the parallel results related to algebra of matrices, adjoint of a matrix, inverse of a matrix and determinant of a matrix hold true in case of quotient matrix.

AKNOWLEDGEMNTS

I take this opportunity to express my gratitude and sincerest appreciation for Dr. Vijay Datta (Principal, Modern School Barakhamba Road, Delhi) for his invaluable guidance and constant motivation. I would also like to acknowledge Manvi Jain (Student, Modern School Barakhamba Road, Delhi) for helping me finalize JCR this paper.

REFERENCES

- 1) Texas Regional Location Quotient Matrix Analysis
- 2) Matric Analysis (Second Edition)
- 3) Matrix computation and its applications
- 4) Linear AlgebraProblems Penn Math